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. . .ABSTRACT

This paper deals with the pfgblem of selecting fair multinomial populations compared
with a standard. TLwo selection procedures are investigated: the natural selection proce-
dure of Gupta and Leu (1989) and an empirical Bayes simultaneous selection procedure. It
is proved that the natural selection procedure is a Bayes procedure relative to a symmetric
Dirichlet prior distribution, and therefore is an admissible selection procedure. For the
empirical Bayes simultaneous selection procedure, the associated asymptotic optimality is
investigated. It is shown that the proposed empirical Bayes selection procedure is asymp-
totically optimal relative to a class of symmetric Dirichlet priors. The rate of convergence
of the empirical Bayes selection procedure is shown to be of order O(exp(—7k + Ink)) for
some positive constant 7, where k is the number of populations involved in the selection

problem.
AMS Classification: Primary 62F07; secondary 62C12.
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- 1. INTRODUCTION

~The concept of diversity within a population is of considerable importance in statistical
theory and applications. The problem of measuring diversity arises in \a, variety of studies
in ecology, sociology, econometrics, genetics and many other sciences./lFor a multinomial
population with m cells, the index of diversity is a function of the corresponding probability
parameter vector p = (p1,...,Pm). In practice, a Schur-convex or Schur-concave function
of p may be appropriate. There are two measures of diversity of a multinomial population
which have been commonly used. These are the Shannon’s entropy function and the Gini-
Simpson index. The notion of the entropy function was introduced by Shannon (1948).
The Gini-Simpson index was introduced by Gini (1912) and Simpson (1949). Both are

Schur-concave function of p.

In the literature, selection procedures using indices of diversity as selection criteria
have been studied by many authors. Gupta and Huang (1976) studied the problem of se-
lecting the population with the largest entropy function for binomial distributions. Gupta
and Wong (1975) considered the problem of selecting a subset containing the population
with the largest ~ntropy for multinomial distributions. Dudewicz and Van der Meulen
(1981) investigated a selection procedure based on a generalized entropy function. Alam,
Mitra, Rizvi and Saxena (1986) studied selection procedures based on the Shannon’s en-
tropy function and the Gini-Simpson index using the indifference zone approach. Rizvi,
Alam and Saxena (1987) also considered a subset selection procedure based on certain
other diversity indexes. Recently, Gupta and Leu (1989) have studied certain selection

procedures based on the Gini-Simpson index.

In this paper, we are dealing with the problem of selecting fair populations compared

with a standard level. Consider k independent multinomial populations =y,..., 7. For
each 1 = 1,...,k, population »; has m -1'.. and is characterized by the corresponding
probability parameter vector p, = (pi1,--  m), where 0 < p;; < 1,5 =1,...,m, and

pi; = 1 for each i = 1,..., k. Define
1

]=
0= ¥(p) =Y (pij ~ =) (1)
j=1

We use 6, as a measure of diversity (or uniformity) of population w;. Note that since
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m
6, =Y P?j — 2, it is essentially equivalent to the Gini-Simpson index. Also note that
j=1

0<6,<1- # For a given constant 65, 0 < 6 < 1 — ;1‘-, population 7; is said to be a
fair population if §; < 6y and a bad population, otherwise. Our goal is to derive statistical
selection procedures for selecting all fair populations while excluding all bad populations.
It should be noted that the problem of selecting fair multinomial populations has been

considered by Gupta and Leu (1989) through a classical approach.

Let Q = {1__J= (pys-- 2P, = (i1, Pim),0 < pi; < 1,5 =1,...,m, ’ip.-,- =1 for
each i = 1,...,k} be the parameter space and let A = {s|s C {1,...,k}}‘b-e the action
space. When action s is taken, it means that population ; is selected as a fair population
if 2 € s and excluded as a bad population if ¢  s. For p € Q and action s € A, the loss

function L(p, s) is defined to be:

L(p.s) =) (6i — 60)L(5,.1-11(6:) + Y (60 ~ 6:)Jj0 0)(6:). (1.2)
i€s igs
In (1.2), the first summation is the loss due to selecting certain bad populations and the

second summation is the loss due to not selecting certain fair populations.

The content of this paper consists of two parts. In Section 2, we investigate some op-
timal properties of the natural selection procedure of Gupta and Leu (1989). It is shown
that, for the loss function L(p, s) of (1.2), the natural selection procedure is Bayes relative
to some symmetric Cirichlet ;rior, and therefore, it is admissible. Section 3 deals with this
selection problem through a parametric empirical Bayes approach. An empirical Bayes
selection procedure is proposed and the corresponding asymptotic optimality is investi-
gated. It is shown that the proposed empirical Bayes selection procedure is asymptotically
optimal relative to a class of symmetric Dirichlet priors. The rate of convergence of the
proposed empirical Bayes selection procedure is also established, and shown to be of order
O(exp(—7k + Ink)) for some positive constant r, where k is the number of populations

involved in the selection problem.

2. OPTIMALITY OF NATURAL SELECTION PROCEDURE

Foreachi=1,...,k, let X; = (Xi1,...,Xim) be the random observation associated

with population m;, where X;;, 1 < j < m, are nonnegative integer random variables such
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that 0 < X;; < N and ) Xi; = N. Then, X, has the probability function
j=1

failp) = e [ ot~ (2.1)
[ (zi;!) 5=

=1

at point z; = (zi1,...,Zim ) for which 0 < r;; SN,1<j<mand ) z,; =N. Let X; be
=1
the sample space generated by X;. Let X = (X,,...,X,) and denote the corresponding

observed value by z = (z;,...,z;). Also, let X = X; x ... x X) denoie the sample space
of X.

A selection procedure d = (dy,...,dx) is defined to be a mapping from the sam-
ple space X into the product space [0,1]F. That is, for each z = (z5,...,2;) € X,
d(z) = (di(g), ..., dk(z)), where di(z) is the probability of selecting population ; as a fair
population given X = z is observed. We let D denote the class of all selection procedures

defined in the above way.

For each i = 1,...,k, (%&,...,%m) is the maximum likelihood estimator of p, =
~ m ..
(Pi1,...,pim). From(1.1), it is natural and reasonable to estimate §; by §;, = 3 (1;-\';’—)2 -+
=1

Gupta and Leu (1989) proposed a natural selection procedure d¥ = (d7,...,dY) based on
6,,i=1,..., k, which is equivalent to the following: For each : = 1,...,k,

if §; <
g ={l Ths (22)
- 0 otherwise,
where § is a prespecified positive constant such that 0 < § < 1 — ,—i‘- Since this natural

selection procedure is heavily dependent on the constant 8§, we denote this procedure by
dN(6) = (div(&), o ’di‘/(ﬂ)_

In the following, it is assumed that for each i = 1,...,k, the parameter vector
p, = (Pity--.,pim) is a realization of the random vector P; = (P;,...,Pim). It is also
assumed that P,,..., P, are iid with a common prior distribution G, belonging to a class

of symmetric Dirichlet distributions C, where

r Ha . =
€ = {galga(p) = B[] !, 0<pi <1, G=Liim, Sopy=1).  (23)
[F(a)] =1

j=1

4




For a prior distribution G4 € C and a selection procedure d = (dy,...,di) € D, we
denote the corresponding Bayes risk by r(Ga,d). From (1.2) and the statistical model

described previously,
k
r(Go,di) =Y _1i(Ga,di) (2.4)
1=1

where

ri(Ga,di) = z di(z) [Z E[P}|z;] - 9oj| flz;)
=1

IEX Jj=1

>

k
(60 - 6) [T (f(z;p,)90(p,))dp, (2.3)
z€X Q;(6o) j=1 7=

[ ratzi)
fle = fmlp)oa(p)dy, = m s Fommrr

zij!

=1
and Q;(6p) = {g = (21""’31:) € Ql6; < 6y}

Since the second term of (2.5) does not depend on the selection procedure d, a Bayes

selection procedure d= = (d?“ . ,df“ ) can be obtained as follows: Foreachi =1,... k,
m
1 if ¥ E[P%|z;] - L <6,
d.Ga(%):_ { 1 ]§l [ :]l-‘t—a] m — Y0 (26)
0 otherwise.

Then, we have the following theorem.

Theorem 2.1. For each positive constant 6 such that 0 < § <1— L and % >
6o, for the loss function L(p,s), the natural selection procedure dV(® given in (2.2) is a

Bayes procedure relative to some symmetric prior distribution G,.

Proof: First, straightforward computation yields that for each : = 1,...,k and j =
1,...,m,
(zij +a+ 1)(1.‘]' + )

and therefore

(m*-m)a+mN+m Y 22, -N*-N
=1

m 1 _
; E[P'§|£‘] “m m(ma+ N + 1)(ma + N) (2.7)




Note that
R i 1
0; <6 jzzl E[P,Jlg,] — < H(a)

where
(6+ =)mN?+(m* —m)a+mN -N?*-N
m(ma + N + 1)(ma + N)

H(a) =

Thus, it suffices to prove that for given 6y, 0 < 6 < 1 — ﬁ, there exists a positive

a such that H(a) = 8. Since H(«a) is decreasing in a, H(0) = ﬂ%n’\%'“%[_vﬁﬁ > 6y by
the assumption, alx_n;o H(a) =0 < 6y and H(a) is a continuous function of a on [0.),
there exists a unique a = a(6y) > 0 such that H(a) = 6y. This implies that the natural
selection procedure dV(®) is the Bayes procedure relative to the symmetric Dirichlet prior

distribution G,(4,). Hence the proof of this theorem is complete. a

The following corollary is a direct consequent of Theorem 2.1.

Corollary 2.1. For each positive constant § such that 0 < § < 1— L, —"‘—6:;—'(%%')'—\/ > b,

the natural selection procedure is admissible for the loss function L(p, s).

3. AN EMPIRICAL BAYES SELECTION PROCEDURE

We assume that the hyperparameter a of the symmetric Dirichlet prior distribution
G4 1s unknown. In this situation, it is not possible to apply the Bayes selection procedure
d®= for the selection problem at hand. Thus, the empirical Bayes approach is employed

here.

Foreachi =1,...,k, let 7V, = } X,?j and let w; denote the observed value of W;.
&~

J
Under the preceding statistical model, W;,..., W, are iid random variables such that

% < W; < N2, 1t follows from straightforward computations that

(N =1)a+1)

= = 1
Hz E[WI] N[ + ma+1

], (3.1)

and therefore,
N? — H2
mug - N(m+ N - 1)

a =
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From (3.2) and (2 7),foreach:=1,...,k,

Z E[P}lz] -

= {(m® = m)(N? = p2) + [mpz — N(m + N = 1)][mN + mw; - N* - N}
X (mpz —mN — N2 4 N)/[m(N = 1)(mpz — N*)N(mus — N2 —m + 1)]
= Qi(p2|wi), (3.3)

m
where w; = Y- z%.
Note that for w;(or g;) being kept fixed, Qi(ji2}w;) is increasing in us.

Define, f, = % Y- Wi. We will use fi; to estimate u and use @Q;(/2|w;) to estimate
=1
Q.(pu2|w;). However, by the definition of p» (see (3.1)), N + Mﬁ’:_ll < pg < N? and

i(u2|w;) tends to zero as u; tends to NV + M Also, it is possible that f, < NV +
i

\—(‘Z‘——l. Thus we define

N N(N-1)
i (w;) = {Q,(uﬂw,) if fia >.N T (3.4)
0 otherwise.
We now propose an empirical Bayes selection procedure d* = (dj,...,d}) as follows:
Foreachi =1,...,k,
if ¥ (w;) < by,
- 0 otherwise.

In the following, we will investigate the asymptotic performance of the empirical Bayes
selection procedure d* for the case where k, the number of populations involved in the

selection problem under study, is sufficiently large.

Since d%= = (dIG" Yoo ,df") is the Bayes selection procedure, for the empirical Bayes

selection procedure d* = (dj,...,d}), ri(Gqo,df) — r,-(Go,,d..G") >0foreach: =1,...%
k

and therefore, r(Gq,d*) — r(Gqa,d%) = 3 [ri(Ga,d}) - ri(Ga,d¥*)] > 0. This nonnega-
=1

tive regret value r(Gq,d*) — r(Gq,d®=) will be used as a measure of performance of the

empirical Bayes selection procedure d*.

Definition 3.1. A selection procedure d = (d;,...,dx) € D is said to be asymptotically
optimal of order {3} relative to the prior distribution G if

r(G,d*) - r(G,d%) = O(Bx)
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where {i} is a sequence of positive numbers such that klim Br = 0.
—00

Foreach: = 1,...,k and for the fixed p,, Qi(p2|w;), which is defined in (3.3), can be

viewed as a function of w;. It is clear that Q;(y2|w;) is increasing in w;. Let

NE

Ai = {wilwi = wi(z,) = ) 2}, 2; € X, Qi(palwi) < 6o}

1

.
]

NE

Bi = {wilw; = wi(z;) = ) =i, z; € Xy, Qi(pz|w;) > 6o}

1

<.
I

From the statistical model under consideration, Qi(u2|w) = Q;(p2|w) = Q(p2|w) (say) for
alle,j=1,...,k. Thus, 4, =.--= 4y = A and By, =-..- = By = B (say).

Let h(w) denote the common marginal probability function of the iid random variables
W= Zl X%,i=1,...,k. From (2.3)-(2.6) and (3.5), straightforward computation yields
]=

that

0 < ri(Gard}) — ri(Ga,dC+)

< )" Pi{pi(wi) > 60| Wi = w; }h(w;) (3.6)
w; €A
+ Y Pi{ei(wi) < 60|Wi = wi}h(wi)
w,EB

where the probability measure P; is computed with respect to (Wi,...,Wi_1, Wisq,....
We).

Thus, it suffices to investigate the asymptotic behavior of P;{¢}(wi) < 6o|W; = w;}
for w; € B and Pi{¢}(w;) > 6o|W; = w;} for w; € A.

Lemma 3.1. For each ¢ > 0 and for sufficiently large k,

(a) Pi{fiz — p2 < —c|W; = w;} < O(exp(—kcEN~4(1 — £)=%/2)).

(b) Pi{fiz — pa > c|Wi = wi} < O(exp(—ke?N~4(1 — )7%/2)).

(¢) Pl < N+HE=W, = w,} < Ofexp(—k(uz—N—~(N=1)N/m)2N-4(1-£)"2/2)).

Note that the above upper bounds are independent of the value w;.

8




2 W;. Then,

J_
J#

Proof: (a). Let fi2(3) =

o ke — Wi
P{ﬂz—ua<—6|Wf=wi}=Pi{“2(’)‘“2<“k_1+uz—1 }

. Thus for k sufficiently large

Note that &= < w; < N? for all w; = wi(z;) = Z z?,
j=1

— Wy

Pi{fp2 — p2 < —c|W; = wy}
. C
< Pi{fia(d) —p2 < —;2'}

1
< exp{—kcEN"*(1 - ;)—2/2},
where the last inequality follows from Theorem 2 of Hoeffding (1963). Note that the upper

bound is independent of w;.
The proof of part (b) is similar to that of part (a). By letting ¢ = p2 — [N + ﬂ-u]
then ¢ > 0. Thus, the result of part (c) follows directly from part (a) O

Lemma 3.2. For w; € A,
Pulipi(wi) > 60l = w3} < O(exp(~K(QF (Bolw) = ja PN (1 = =)/2))

where Q7 !(-|w;) is the inverse function of Q;(-|w;).

Proof: From (3.4) and the fact that 8y > 0,
P{pi(wi} > 60|W; = wi} = P{Qi(f2]wi) > 6o|W; = wi}. (3.7)

Now, for each fixed w; € A, Q(u|w;) is strictly increasing in u for N + M%Z <p<

2 and Q;(p2|w;) < 6o. Thus p2 < Q' (fo|wi). Then,

Qilfiz|w:) > 8o <> fiz > Q7' (6o|wy)

> i — p2 > Q7 ' (Bolwi) — p2 > 0.

(3.8)

9




Combining (3.7) and (3.8), by Lemma 3.1 (b), we obtain, for w; € A,
Pg{tp:(w,') > GOH’V;' = w,'}
= Pi{ita = p2 > Q7 (Bojwi) — p2|Wi = wi}

< O(exp(~k(Q7 (olwi) ~ 2PN ~4(1 ~ —)72/2)),

Thus, the proof of this lemma is complete. O

Lemma 3.3. For w; € B,

Pi{ei(wi) < 6p|Wi = wi} < O(exp(~k(Q] (Bo|wi) — p2)’ N7H(1 - %)_2/2))

+ Ofexp(~k{ga = N — (N = 1)N/m)E*N"1 - -%)‘2/2)).

Proof:

Pi{el(wi) < 6o|W; = w;)

= Pi{pi(wi) < 6o, ﬁ?SN‘*‘E%—ﬁIWi:w:’} (3.9)
+ Pt (w) < fo, o > N+ Sy oy,
From Lemma 3.1 (c),
Pi{oi(w;) < 6g, i SN + MT;:D-IWi = w;}
< Ofexp(~k(uz = N = (N = DN/mPN 41 = =)72/2)) (3.10)

From (3.4) and an argument analogous to that given in the proof of Lemma 3.2, we

have

Pi{pi(wi) < 6o, fiz > N + (Wi = w;}

N(N —1)

N(N = 1)
m

= P{Qi(f2|wi) < 6o, fia > N + Wi = wy}
< Pi{fiz ~ p2 < Q7 (Bolwi) — 2| Wi = wi) (3.11)
= Oexp(~K(Q (fo}) — 2N =4(1 = =)7%/2))

10




where Q7 '(6o|w;) — p2 < 0 since w; € B. Thus, the lemma follows from (3.9)-(3.11) O

Let 7, = min{(Q;'(6olwi) — p2)?N~*(1 — #)'2/2|w,- € A;UB;}. Then, 4 >0
since Q7 '(8o|w;) — uz2 # 0 for all w; € A; U B; and A; U B, is a finite set. Then 7 =
min(ry, (2 = N — (N = 1)N/m)32N-4(1 — £ 7%/2)) > 0.

The following theorem describes the asymptotic optimality property of the empirical

Bayes selection procedure d* = (d},...,d§).

Theorem 3.1. Let d* = (d},...,d};) be the empirical Bayes selection procedure defined
through (3.4)-(3.5). Suppose that the prior distribution is a member of the class C of

symmetric Dirichlet distributions given in (2.3). Then
(a) Foreachi =1,...,k, ri(Gq,d}) — T‘,’(Ga,d?“) < O(exp(—Tk)), and
(b) r(Gq,d*) — r(Gq,d®) < O(exp(—Tk + Ink)))

where 1 is the positive constant defined previously.

Proof: Part (b) is a direct result of part (a). Thus, we need to prove part (a) only. From
(3.6) Lemmas 3.2 and 3.3,
T‘,‘(Ga, d:) - ri(GOH diGal )
< Ofexp(=tk)) Y h(w)
w; €EAUB

= O(exp(—T1k)).

Thus, the theorem follows. O
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